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Abstract The cache memory has a direct effect on the performance of a computer
system. Instructions and data are fetched from a fast cache instead of a slow memory
to save hundreds of cycles. Reducing the cache miss ratio will definitely improve the
execution time of an application. In this work, we propose cache memory designs that
reduce the number of conflict misses significantly. The proposed designs reduce the
conflict misses in the last level multi-way set associative cache. Each set is divided
into a group of subsets: the first is referred to as the exclusive subset, and the rest
are the shared subsets. The exclusive is configured as a traditional cache where each
block is mapped to the set whose index matches the block index. In addition to their
standard cache indexing role, the shared subsets are configured to host blocks with
different indices. A memory block can be mapped to one subset from the exclusive
type or one of multiple subsets from the shared type. Since the proposed technique
is based on combining multiple sets of the shared part to form a larger set, that is
shared between memory blocks with different indices, we have chosen the name “set
folding.” The decision as to where to map a memory block depends on the number of
misses encountered at each of the potential target sets. To evaluate the proposed design
based on the overall hit rate, twenty-three benchmarks from SPEC CPU 2006 were
simulated using the SuperESCalar simulator. The proposed designs require a few extra
storage bits which adds a small overhead on the hardware complexity in comparison
with the conventional cache. However, the proposed designs achieve lower miss rates
for most of the benchmarks.
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1 Introduction

1.1 Processor-memory gap

The performance of the microprocessor is increasing at a rate that is higher than that
of the memory. It has been reported that the processor performance was improving
at an annual rate of 60% before 2004 and has been improving at a rate of 20% since
2004. On the other hand, the main memory is improving at a rate of 9% [1]. This rapid
development was according to Moore’s law which states that the transistor density
doubles every 18 months. New transistor technology is smaller and faster and has less
power consumption [2]. This results in an increasing gap between the speeds of the
processor and the main memory.

The problem of overall latency in any computer system arises from the off-chip
location of the memory unit. In other words, the process of data transfer from mem-
ory to CPU and vice versa does not occur within the same chip which, essentially,
reduces the computer performance [3,4]. To reduce the impact of this problem, com-
puter architects use a mix of SRAM (static random access memory) which is fast
and expensive and DRAM (dynamic random access memory) which is cheaper and
slower. The combination of different memory types in different layers of the memory
is normally referred to as the memory hierarchy. The first two to three layers of the
hierarchy which constitute the system cache are typically manufactured using SRAM
technology. The need for a cache is becoming inevitable. Using conventional cache
may achieve reasonable improvement in terms of the average memory access time
(AMAT), but in many cases the amount of improvement may be insufficient. There-
fore, further research for finding new designs and structures that efficiently utilize the
cache becomes urgently needed in many applications.

The use of memory hierarchy bridges the gap between a fast processor and a rela-
tively slow memory. In many scenarios, it reduces the average memory access times
from order of hundreds of cycles to order of tens of cycles. This was the main moti-
vation for using the cache. The cache is designed to store the code and data segments
that are most frequently needed by the processor [5,6].

To properly address the cache, the memory address is divided into three parts , the
byte offset b = log2(blocksi ze), the set index which requires m = log2

cache si ze
n ∗ block si ze ,

where n is the associativity level, and the tag t .
The average memory access time (AMAT) is a function of the hit time, miss rate,

and miss penalty. Theoretically, the reduction in any of these factors will decrease the
AMAT, but in many cases the reduction in one may be at the expense of increasing
the others. Hence, a trade-off is usually needed. Using a multi-level cache, in general,
decreases the miss penalty and consequently decreases the AMAT = Hit time +
Miss rate ∗ Miss penalty. Adding more levels bridges the speed gap between the
fast first-level cache and the memory [7].
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1.2 Motivation

The large gap in miss rate between direct-mapped cache and set associative caches
inspires a great motivation to make efforts on investigating and researching new
schemes and designs to bridge this gap. The hit rate of a fully associative cache is
much higher than that of a direct-mapped cache for all benchmarks. This attracts
researchers to innovate new designs to bridge this gap. Dispersing data into cache and
utilizing all the sets of the cache contributes to reducing the number of conflict misses.
In the case when a set is exposed to a high access pressure, more conflict misses may
occur. Using a less-accessed set to reduce the pressure on a heavily used one alleviates
and reduces the rate of misses resulting from conflicts.

In this work, we propose a new cache structure that is different from the conventional
cache. This design reduces the conflict misses of the conventional cache without the
need for increasing its associativity. The proposed design depends on dividing the
cache into two parts or subsets. The first subset is called the exclusive subset. The
exclusive subset is designed to host the blocks that have matching index with the set
index. The second subset is called the shared subset. A shared subset can host blocks
with matching index, as well blocks with different indices. The choice of the set to
host a block depends on the number of misses encountered by each of the two possible
sets.

1.3 Paper organization

The rest of the paper is organized as follows. Section 2 presents some related work,
Sect. 3 presents the proposed design, Sect. 4 presents the evaluation environment,
Sect. 5 presents the experimental results, and Sect. 6 presents the paper conclusion.

2 Related work

The high rate cache conflict miss is one of the major causes of low computer perfor-
mance. Many researchers have been working to alleviate the performance problem
caused by cache misses. One of the great achievements in the cache design to alleviate
the problem of conflict misses is the introduction of the victim cache [6]. The victim
cache is a small fully associative cache added to the main cache to host some blocks
after their eviction from the main cache. It extends the associativity of the sets that
suffer from high rates of conflict misses. The main drawback of using a victim cache
is the increase in the hit time due to the need to check the fully associative part of the
cache in the case of a miss.

In skewed cache [8], each set is related to another one by inverting the most signif-
icant bit of the set index. Therefore, the tag stored in each block takes one bit more
than the tag stored in the conventional scheme.

In [5], a technique called column-associative cache is proposed. It uses two hash
functions: the first uses the set index as the hashing key, whereas the second comple-
ments the most significant bit of the set index before using it as the hashing key. That
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is, the cache sets are organized in pairs. A set extends to the other set in the pair when
a conflict miss occurs.

In [8–11], intelligent indexing functions to reduce the conflict misses are used.
The main drawback of these designs is the high power consumption due to the high
hardware complexity. In [12,13], the authors used software techniques based on page
coloring and bin hopping to optimize the process of block mapping.

In [14], the author proposed a B-cache which attempts to reduce the number of
conflict misses by distributing the accesses uniformly over the lines of the direct-
mapped cache. To implement this, the author increased the decoder length and used
programmable decoders. The index bits are divided into two categories, the most
significant bits are programmable using programmable decoders (PD), and the least
significant bits are non-programmable using non-programmable decoders (NPD). In
the conventional direct-mapped cache, there is a single room for placing a block, but
in a B-cache, there are multiple choices for placing a specific block. The B-cache
utilizes some of the empty sets to reduce the miss rate at the expense of an increase
in the power cost without a significant increase in the access time as compared to a
conventional direct-mapped cache.

The proposed solution in [15] is similar to that in [14]. However, in [15], the number
of bits for the cache index is increased. In [14], it is possible to use a large number of
bits for indexing to accomplish the sought objective.

In [16], a V-way cache attempts to reduce the conflict misses by allowing the use
of more tags than the available physical sets. Pointers are used to associate the tag
with its actual set. A set balancing cache in [17] outperforms the V-way approach
by performing a superior set balancing mechanism. Set balancing moves lines from
stressed sets to some underutilized ones.

The two methods in [18,19] use XOR-based mapping schemes to obtain pseudo-
random block placement. Having a random distribution of memory blocks over the
cache sets statistically reduces the rate of conflict misses. The difficulty to predict
the pattern of memory references in the general case makes the XOR-based mapping
function hard to implement. Hence, it could work for some applications and not for
others.

The prime modulo and prime displacement indexing functions achieve better dis-
persion with high cost due to their complex calculations [9]. The prime modulo and
prime displacement render some cache sets unused. This waste is a result of using a
prime number that is less than the number of sets as the modulus. The use of prime
modulo reduces the rate of conflict misses, yet it may not be used in caches existing
in the critical execution path like the first-level cache. It could, however, be used in
large higher level caches.

The author of [8] proposed a skewed-associative cache. It is a two-way cache
which uses a separate hashing function for each way. The hashing function is based
on XORing two bits from the block address. This scheme cannot easily implement
the LRU replacement policy because the blocks in a cache set do not share the same
index.

In [20], the author showed that if certain bits are used in the indexing process,
the miss rate can be reduced. To determine the index bits, a heuristic was proposed.
The indexing function is determined for each application at design time to optimize
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its performance at run time. This technique performs well only if all applications are
known in advance. In fact, this was the intention of the authors, to optimize the design
for a specific set of applications.

There are many other techniques developed to reduce the miss rate. Examples of
these techniques include cache bypassing [21] , cache miss classification and isolation
[22], reconfigurable associativity and dynamic cache partitioning [23–25], and page
remapping and coloring at run time [26,27].

In [28,29], the use of thrashing-avoidance cache (TAC) increases the hit rate sig-
nificantly when applied on C++-based applications. It is to noted that C++-based
applications suffer from more cache conflict misses than C-based application. This
is due to that fact that frequent procedure calls/returns in object-oriented programs
reduces the effective locality of reference and increases the chances of jumping
between blocks that have the same index. It has been shown in [30] that C++ based
applications execute almost seven times more calls than traditional C programs. In
TAC, the instructions are split into groups, each being associated with one of the
cache banks. In data cache, the convention of the store-/load-dependent data cache
(SLDC) is introduced. In SLDC, the address distance is used as the main criterion for
distributing data over the different cache segments. Then, a group of related segments
is virtually gathered in each bank of the cache in order to increase the locality of
reference and consequently increase the hit rate.

In [15], a technique based on adaptive selection of cache indexing bits (ASCIB) is
proposed. It dynamically alternates the bits used for set indexing in a way to reduce
conflict misses. Choosing the appropriate indexing bits during run time can success-
fully change the working set during the execution of the application. These changes
lead to a better dispersion of the working set over the available sets. Each iteration
of ASCIB algorithm is divided into three phases: the bit-victimization phase, the bit-
selection phase, and the idle phase. In bit-victimization phase, the algorithm chooses
the worst bit of the set index bits that does not help in dispersing the working set
fairly on the available sets. The bit is victimized based on its low entropy and high
correlation. In the bit-selection phase, the algorithm selects the appropriate bit of the
tag to replace the victimized bit. The selection of this bit helps disperse the working set
fairly over the available sets. Finally, in the idle phase, the algorithm does not perform
any action. It, however, results in power saving. In ASCIB, analyzing more bits results
in avoiding more conflict misses. However, this increases the area size, the latency,
and the power consumed.

The authors of [31] proposed a new technique called WS-DAM to dynamically
increase the associativity of the sets suffering more conflict misses. Expanding the
associativity of some sets does not mean increasing the cache size. This is attained by
moving some of the ways from the lightly used sets to the heavily used ones. CMP-
SVR shows, on average, 6.63% improvement in execution time (CPI) and 14.46%
improvement in miss rate.

In [32], they proposed CMP-SVR technique to dynamically increase the associativ-
ity of most pressure sets without increasing the cache size. The last level cache (LLC)
is divided into two parts: reserve storage (RT) and normal storage (NT). The sets are
divided into fellow groups. In other words, each set has its own fellow and can use
its reserve ways to increase its associativity during the execution. An extra tag array
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(SA-TGS) is added to RT to facilitate the searching process with less expensive cost.
The associativity of SA-TGS depends on the number of sets in a fellow group and the
number of reserve ways per set. CMP-SVR shows about 8% improvement in cycles
per instruction and 28% improvement in miss rate.

In [33], the author proposed new techniques to address the problem of conflict
misses in multi-level cache. Two placement strategies were proposed: least XOR
and full XOR for multi-level caches. These techniques reduce the opportunity of
two addresses to conflict with each other at multiple places in multi-cache system.
This leads to improving the global miss rate, which is more important indicator of
performance than the local miss rate. These techniques show 10–20% improvement
in L2 and L3 cache miss rates, without any extra hardware.

In [34], the authors proposed a new technique for reducing both conflict and capacity
misses. This technique depends on changing the placement and eviction policies of
the cache. The decision of placement is taken based on the criteria of the set saturation
level (SSL) that measures the degree of a set ability to hold its working set. This
technique is called Bimodal Set Balancing Cache and requires only less than 1% of
storage overhead. Bimodal Set Balancing Cache shows about 16% improvement in
L2 cache and 4.8% improvement in IPC.

The authors of [35] proposed some cache management techniques on the CMP
platform. These techniques lead to evenly distribute memory accesses across the sets
of the private caches as well as the shared caches. SSBC, PSBC, BP-NUCA, and BP-
NUCA+ cache management schemes were proposed based on the single-core scheme
SBC [17]. Adapting the SBC to shared caches (SSBC) led to system degradation rather
than improvement. Adapting the SBC to private caches (PSBC) shows an improvement
of about 2%. Furthermore, the modification of private cache-based techniques BP-
NUCA and BP-NUCA+ shows insignificant improvement. In other words, the non-
uniformity resulting from the distribution of memory accesses across cache sets of
multiprogrammed workloads running on CMPs platforms did not result in significant
improvement in the cache performance.

In [36], the authors proposed a new GPU cache indexing technique called full
permutation (FUP) which uses multiple metrics to calculate the set index, such as the
feature bits and the intra-warp concentration. FUP uses two-level XOR gates for the set
index calculation. Experiments showed that FUP outperformed preceding techniques,
such as BXOR [18] and pDisp [9].

In [37], the authors introduced the concept of array optimal padding for arbitrary
tile sizes in a set associative cache. Padding for nested tiles and multi-level caches
is also proposed. Experimental results showed an improvement in terms of reducing
conflict misses due to the use of padding in multiple benchmarks.

In [38], a new technique, called pseudorandom interleaving cache (PRIC), to
improve the cache indexing function, was developed. This technique is based on
polynomial modulus mapping. It contributes to alleviating the associativity stalls and
reducing conflict misses.

In [39], a technique for determining the sources of cache conflict misses is proposed.
A cache simulator is used as a diagnosis tool to identify the main causes of conflict
misses in the cache lines. The results obtained can help produce more efficient indexing
functions.
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3 The proposed design

3.1 Introduction

The main objective of the proposed cache design is to reduce the rate of conflict misses.
The high penalty of conflict misses in the last level cache (LLC) makes the miss rate
minimization a critical design objective for many researchers.

Cache designers attempt to satisfy one or more the following criteria: high hit rate,
fast access time, small area, small storage overhead, and low power consumption. In
general, optimal cache architectures combine the merits of the simple direct-mapped
cache with the high hit rate characteristics of set-associated caches. That is, it will
be very attractive to increase the associativity level of the cache without increasing
its size. The proposed design is intended to extend the n-way set associative cache
starting from n equal to two.

In this section, we present details about the proposed designs and their implementa-
tions, illustrative figures, the replacement policy, and the amount of memory overhead
for each proposed design in comparison with the conventional, skewed, and victim
caches.

3.2 Set folding architecture

The set folding architecture is produced by folding multiple sets of different indices
in one super set that is shared by more than one set. Hence, we have chosen the name
“set folding” for the proposed technique. We present two different architectures based
on the proposed idea of set folding, namely single set folding and double set folding.
We will further illustrate the architectures of the triple and quad set folding by figures
only. The analysis will be based on the general case of set folding design.

3.2.1 Single set folding design

In the single set folding design of a n-way set associative cache, a set is divided into
two subsets, each containing n

2 blocks, as shown in Fig. 1. The first subset is configured
to host the blocks with indices that match the set index, whereas the second one is
configured to host blocks with matching indices as well as blocks with the same block
index except the most significant bit (MSB). For example, a second subset of index k
may contain blocks with index k as well as those with index (k + 2(m−1)) mod 2m ,
where m is the number of bits associated with the set index, as illustrated in Fig. 2.

The physical address in the proposed design has 32 bits, divided into three parts:
byte offset with b bits, set index with m bits and tag with t bits. Thus, we have 2m

sets of n 2b-byte blocks. For example, when m = 6, the second subset of set number
100011 can host blocks with index 100011 and/or with index 000011. In this paper,
we will refer to the first cache subsets as the exclusive cache, and the second cache
subsets as the shared cache. One extra bit is required for each block in the shared
cache. This bit is added to the tag part of the block to distinguish the original set index
from the extended block index.
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The number of extra storage bits needed over a conventional cache is very little.
For example, if we have a cache with t tag bits and b byte offset bits, one valid bit, one
dirty bit, and 8 ∗ 2b data bits in each block, the number of bits needed by the exclusive
subset of the cache is calculated as shown in Eq. 1.

stored_bits_in_cache = #ways × #sets × #bits_in_block (1)

The number of data bits stored in the exclusive cache is calculated using Eq. 2.

stored_bits_in_the_exclusive_part

= n

2
× 2m × 8 × 2b = 4 × n × 2m+b.

(2)

The memory overhead of the single set folding design is one bit per each extended
block, which is equivalent to one bit per every two blocks. Hence, this overhead relative
to the data size can be expressed as in Eq. 3.

memory_overhead = 1

2 × 8 × 2b
= 2−(b+4) (3)

For example, the memory overhead for a two-way 1 MB cache with 64-byte block
size incurs an overhead of 1 KB which forms less than 0.1% of the cache size.

3.2.2 Double set folding design

In double set folding design, the cache is divided into three parts, as shown in Figs. 3
and 4. The first part (exclusive subset) remains the same as in set folding design.
The exclusive subset represents half of the cache. However, each set of the exclusive
subsets can receive a block that matches its set index. Therefore, each set contains
half the number of blocks as a conventional cache. The second part of this design is
Shared Subset 1; half the blocks are similar to the conventional cache, and the other
half is designed to allow two possible indices in each set. Every two memory addresses
having the same set index, except the MSBit, map to the same Shared Subset 1, as
shown in Fig. 3. The third part is referred to as Shared Subset 2. It contains one-fourth
the number of sets of the conventional cache, with blocks with 2 different bits in the
block index map to the same set. In other words, every four memory addresses having
the same set index except the two MSB of their set index can be mapped to the Shared
Subset 2 at the same set. However, in this design, the set associativity extends from
n-way to 2n-way of hybrid associativity. That being said, in normal conventional
cache, n-way hosts blocks from the same set index, but in this design, it hosts 2n
blocks from different set indices which gives opportunity to significant reduction in
the number of conflict misses. However, the stored tag in exclusive subset is the same
as conventional, but the number of stored tag bits in shared subsets is one bit more than
the tag stored in conventional cache. Therefore, the number of tag bits stored in the
Shared Subset 2 has two bits more than the tag stored in conventional cache, as shown
in Fig. 4. The number of comparators needed to operate this design is 2n compared
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to n in conventional cache, and these comparators are classified into three types based
on the number of bits. The first type is used in exclusive subset, the number of this
type of comparators is n

2 , and each of them is a t-bit comparator. The second type is
used in Shared Subset 1, its number is n

2 , and each of them is a (t + 1)-bit comparator.
The third type is used in Shared Subset 2 using n comparators, and each of them is
a (t + 2)-bit comparator. In other words, the hardware overhead is extremely low in
comparison with other schemes, such as Victim cache. In this design, the hardware
overhead comprises n comparators with only a few extra bits in design. The memory
overhead in comparison with the conventional cache can be computed as in Eq. 4.
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memory_overhead_in_double_set_ f olding_design

= 1 × 2m−1 × n/2 + 2 × 2m−2 × n

2m × n × (8 × 2b)
= 3 × 2−(b+5)

(4)

For example, in a 32-bit address with 64-byte blocks, the storage overhead will be
less than 0.15%.

Similarly, the architectures of the triple and quad set folding designs are depicted
in Figs. 5, 6, 7 and 8.

3.2.3 Analysis of the general set folding design

In general, let the variable u refer to the value of set folding factor. In other words,
u is equal to 1 in the case of a single set folding, 2 in the case of double set folding,
and so on. The number of extra bits needed to support the set folding design with set
folding factor equal to u is given in Eq. 5.
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Hence, the memory overhead with respect to the cache data size is given by Eq. 6.

123



www.manaraa.com

982 A. Shatnawi, M. Alsaedeen

(a)

(b)

Exclusive Part Shared Part 
C=1 C=7 

A0 A1 C=5 C=4 C=3 C=2 

C=0 C=6 A2 B2 A3 A4 
B0 B1 

Exclusive Part Shared Part 
C=2 C=7 

A0 A1 C=6 C=5 C=4 C=3 

C=1 C=0 A2 B2 A3 A4 
B0 B3 

Fig. 9 An example illustrating the placement and replacement policies. a After the access sequence A0,
B0, A1, B1, A2, B2, A3, A4, A0, B0, b after encountering an access form block B3

memory_overhead

= extra_bits

total_si ze_in_bits_of _conventional_cache

= n × 2m(1 − 2−u)

n × 2m × (8 × 2b)

= (1 − 2−u) × 2−(b+3) (6)

3.3 Cache placement and replacement

If there is a vacant block in the exclusive part of a set, a missed block with a matching
index is placed in this vacant block. If all blocks in the exclusive part are occupied
and there is a vacant block in the shared part, the missed block is placed in the shared
part. Figure 9a illustrates the placement of two groups of blocks, A and B. The blocks
of each group have the same set index, the two goups have distinct exclusive indexes,
and they both have a common shared index. This example is based on a 4-way set
associative cache with single set folding design. The replacement policy is based on
the general LRU. The label C refers to the counter used to support the replacement
structure. The policy considers the blocks in the exclusive part along with the shared
part for replacement without touching the blocks of the exclusive part of other sets.
As illustrated in Fig. 9b, when B3 is accessed, the LRU block from the exclusive part
of B and the shared of both A and B is replaced, which happened to be B1 as it has
the highest counter (A1 is not considered). Hence, B3 replaces B1 and all the counters
are adjusted accordingly.
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4 Evaluation environment

4.1 SESC simulator

Experiments to demonstrate the effectiveness of the proposed design have been carried
out using the SESC microprocessor architectural simulator. This simulator is based
on execution-driven simulation environment that supports a dynamic superscalar pro-
cessor model in which the architecture is simulated cycle by cycle [29,40]. SESC
simulates a full out-of-order pipeline with branch prediction, caches, buses, and every
other component of a modern dynamic superscalar processor necessary for accurate
simulation. It has the ability to model different processors and memory architectures
[41]. SPEC2006 benchmarks are used to demonstrate the effectiveness of the proposed
design. All benchmarks enter rabbit mode (fast forwarding) for five billion instructions
after that they are simulated for 1 billion committed instructions. All benchmarks are
compiled to binary executable code based on the MIPS instruction set architecture.
The output of the SESC simulator is verified by comparing with the output generated
by the SPEC organization [42–44].

4.2 Benchmarks classification

As shown in Table 1, the given benchmarks are classified into two groups, A and B.
Group A consists of the benchmarks whose hit rates, when a direct-mapped cache is
used, are lower than those when using a fully associative scheme by more than 20%.
Group B benchmarks are those whose hit rates in the case of a direct-mapped cache
are within 20% of the those in the case of a fully associative cache. The benchmarks
of Group A suffer from intensive cache address conflicts; hence, they would benefit
from structures that alleviate conflict misses as a result of extending the effective
level of associativity. It is to be noted that Group A consists of five floating point
(FP) applications (bwaves, dealII, gromacs, soplex, and sphinx3) and four integer
(INT) applications (gobmk, hmmer, omnetpp, and perlbench). On the other hand, the
benchmarks of Group B are not conflict intensive and hence less likely to benefit from
the proposed designs. Group B consists of six FP applications (calculix, lbm, milc,
namd, povray, and zeusmp) and eight INT applications (astar, bzip2, gcc, h264ref,
libquantum, mcf, sjeng, and xalan).

The hit rate of the libquantum benchmark is very close to zero as shown in Table 1.
This application is known to suffer from a very low hit rate for small size caches as
presented in [45]. In our study, however, we only used small size cache to demonstrate
the effectiveness of the proposed technique in reducing conflict misses for most of the
benchmarks.

4.3 SESC configuration

Table 2 shows the base configuration used to run the SESC simulator.
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Table 1 SPEC 2006 applications with their L2 cache miss rates

Benchmark Direct-mapped hit rate (%) Fully associative hit rate (%)

Group A

Bwaves 22.04 50.9

dealII 38.42 81.47

Gobmk 22.84 44.76

gromacs 17.15 39.96

Hmmer 42.24 78.3

omnetpp 12.99 36.41

perlbench 18.46 40.34

Soplex 10.2 41.54

sphinx3 2.61 53.36

Group B

Astar 78.3 94.3

bzip2 32.17 50.68

calculiux 35.11 51.97

gcc 20.32 38.53

h264ref 38.84 43.65

lbm 3.85 20.72

libquantum 0 0

mcf 4.34 19.07

milc 9.08 23.88

namd 39.53 58.29

povray 29.92 48.88

sjeng 32.96 51.01

xalan 34.84 44.58

zeusmp 23.07 32.02

5 Experimental results

We used twenty-three benchmarks from the SPEC CPU2006, listed in Table 1, to com-
pare the proposed designs with the the conventional cache. Each benchmark contains
one billion instructions. The memory address is 32-bit wide. Simulation results have
shown good improvement in terms of the hit rate for all the twenty-three benchmarks
as will be presented. The impact of the level of associativity on the hit rate for all used
benchmarks before applying the proposed technique is depicted in the Figs. 10, 11
and 12.

All speedups in this paper are calculated relative to the conventional cache with
the same associativity level. The results can be summarized as follows, which are also
depicted in Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21 and 21.

1. Two-way single set folding scheme The average speedup for all benchmarks is
22.7% with the peak speed being 65% for the lb benchmark. It has also been noted
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Table 2 Parameters of the simulated architecture (base configuration)

Processor

Number of CPU’s 1

Clock rate 3 GHz

Number of architecture bits 32

Out of order True

Fetch width 4

Issue width 4

Retire width 5

Instruction queue size 24

Functional unit 64 INT, 64 FP, 1 LD, 1 ST

Max pending LD/ST 32 LD, 32 ST

ROB size 128

Number of registers 128 INT registers, 64 FP registers

Memory

L1 data 8 KB, 1 way, 64-B line, 2 cycles HT

L1 instruction 8 KB, 1 way, 64-B line, 1 cycle HT

L2 unified 16 KB, X way, 64-B line, 10 cycles HT

Page size 4096

Memory latency 250 ns

Table look-aside buffer

Instruction TLB 512 B, 64 way, 8-B line, 3 ports, LRU

Data TLB 512 B, 64 way, 8-B line, 3 ports, LRU

Prediction table

16 KB size, hybrid, 2K entries, 2 way, 1 cycle HT

that no benchmark was subjected to any slowdown. Figures 13, 14, 15 depict the
performance of this design.

2. Two-way double set folding scheme The average speedup for all benchmarks
is 32.5% with the peak speed being 137% for the dealII benchmark. Fig-
ures 13, 14, 15 depict the performance of this design.

3. Two-way triple set folding scheme The average speedup for all benchmarks is
24.9% with the peak speed being 80.2% for dealII benchmark. Figures 13, 14, 15
depict the performance of this design.

4. Two-way quad set folding scheme The average speedup for all benchmarks is
10.9% with the peak speed being 54.7% for lbm benchmark. Figures 13, 14,
and 15 depict the performance of this design.

5. Four-way single set folding scheme The average speedup for all benchmarks is
13.1% with the peak speed being 307.2% for the milc benchmark. Figures 16, 17,
and 18 depict the performance of this design.

6. Four-way double set folding scheme The average speedup for all benchmarks is −
10.8% with the peak speed being 8.4% for the sphinx benchmark. Figures 16, 17,
and 18 depict the performance of this design.
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Fig. 11 Hit rates of multiple cache organization (part2)

7. Four-way triple set folding scheme The average speedup for all benchmarks is
4.3% with the peak speed being 30.2% for the dealII benchmark. Figures 16, 17,
and 18 depict the performance of this design.

8. Four-way quad set folding scheme The average speedup for all benchmarks is −
5.9% with the peak speed being 8.1% for the sphinx3 benchmark. Figures 16, 17,
and 18 depict the performance of this design.

9. Eight-way single set folding scheme The average speedup for all benchmarks is
3.5% with the peak speed being 270.4% for the milc benchmark. Figures 19, 20,
and 21 depict the performance of this design.

10. Eight-way double set folding schemeThe average speedup for all benchmarks is −
15.5% with the peak speed being 8.7% for the dealII benchmark. Figures 19, 20,
and 21 depict the performance of this design.
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Fig. 12 Hit rates of multiple cache organization (part3)

-10

0

10

20

30

40

50

60

70

80

90

100

astar bwaves bzip2 calculix deal11 gcc gobmk gromacs

sp
ee

du
p 

Benchmark 

Performance improvement(Speedup) 

set folding

double set folding

triple set folding

quad set folding

skewed

vic�m

Fig. 13 Performance improvement results of our proposed designs (two-way) (part1)

11. Eight-way triple set folding scheme: The average speedup for all benchmarks is −
6.5% with the peak speed being 45.3% for the dealII benchmark. Figures 19, 20,
and 21 depict the performance of this design.

12. Eight-way quad set folding scheme The average speedup for all benchmarks is −
15.3% with the peak speed being 71% for the astar benchmark. Figures 19, 20,
and 21 depict the performance of this design.

Based on the above analysis, the following observations about the performance in
terms of the hit ratio are presented:
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Fig. 14 Performance improvement results of our proposed designs (two-way) (part2)
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Fig. 15 Performance improvement results of our proposed designs (two-way) (part3)
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Fig. 16 Performance improvement results of our proposed designs (four-way) (part1)
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Fig. 17 Performance improvement results of our proposed designs (four-way) (part2)
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Fig. 18 Performance improvement results of our proposed designs (four-way) (part3)
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Fig. 19 Performance improvement results of our proposed designs (eight-way) (part1)
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Fig. 20 Performance improvement results of our proposed designs (eight-way) (part2)
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Fig. 21 Performance improvement results of our proposed designs (eight-way) (part3)

1. The two-way double set folding outperforms the two-way single set folding by
about 43%.

2. The two-way triple set folding outperforms the two-way single set folding by about
9.6% but, obviously, performs less than the two-way double set folding.

3. Neither of the two-way quad set folding, nor the two-way eight set folding performs
as well as the single set folding.

4. For the eight-way, the single set folding outperforms all other folding schemes.

The improvement made by the single set folding over the conventional two-way
cache is due to the extension of the effective cache associativity. That is, the two-way
associativity is normally inadequate for attaining high hit rate. The four proposed
designs when applied to the two-way set associative cache remove significant propor-
tion of conflict misses, thus improving the hit rate. However, the double set folding
has achieved the best performance among all other folding levels.
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6 Conclusion

In this work, we have proposed cache memory designs that reduce the number of
conflict misses significantly.

We have presented a new cache structure that is different from the conventional
cache. This design reduces the conflict misses that occur in the conventional caches
with a little increase in hardware complexity without the need to increase the cache
associativity. We have referred to the proposed design as “set folding” technique. The
principle of set folding technique is to divide each set of the given cache into two
subsets. The first subset is called the exclusive subset. The exclusive subset can host
blocks that have a matching index with the set index. The second subset is called
the shared subset, which hosts blocks with a matching index, as well blocks with a
different index. Four designs have been derived from the set folding technique, namely
single set folding technique, double set folding technique, triple set folding technique,
and quad set folding. The single set folding technique has one shared subset and one
exclusive subset, the double set folding technique has one exclusive subset and two
shared subsets, the triple set folding technique has one exclusive subset and three
shared subsets, and the quad set folding technique has one exclusive subset and four
shared subsets.

To evaluate the proposed design based on the overall hit rate, twenty-three bench-
marks from SPEC CPU 2006 were simulated on SuperEScalar simulator (SESC). The
speedup results are summarized as follows. Using a two-way cache, the best folding
level is the double set folding, which achieves 32.5% improvement over the conven-
tional two-way cache. For the four-way cache, the best improvement is achieved when
the single set folding technique is used, 13.1% improvement. An improvement of 3.5%
is achieved when single set folding technique used for the eight-way cache structure.
Hence, it can be concluded that the double set folding is the best design among the
four designs to alleviate the problem of conflict misses. It can be concluded that the
proposed design effectively increases the hit rate by increasing the effective cache set
associativity without increasing the cache size. On anther front, the proposed designs
do not produce significant power overhead as the extra hardware is extremely small
in comparison with the entire cache size.
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